
Supplementary Note 1: Survey of previous and related concepts

1.1 Short introduction to multiple testing

In the multiple testing problem, we want to test m hypotheses H1, . . . , Hm based
on their corresponding p-values P1, . . . , Pm. From these, m0 tests (with indices
in H0, i.e. |H0| = m0) are true nulls, while m1 tests (with indices in H1) are
alternatives. A multiple testing procedure will reject a certain fraction of the
hypotheses, and the possible outcomes are summarized in Table S1.

Not-rejected hypotheses Rejected hypotheses Total
True nulls U V m0

False nulls T S m1

m�R R m

Supplementary Table S1: Outcomes of a multiple testing procedure applied to m
hypothesis tests

The first approaches to multiple testing were concerned with controlling the
Family-wise Error Rate (FWER = Pr[V � 1]) at a pre-specified level ↵. In
many applications, especially ones of exploratory nature, the FWER turns out to
be too conservative. For instance, when screening many thousand substances, and
detecting dozens of hits, one might be willing to accept a few false hits among
them, as they may be eliminated later under a more detailed inspection. For
this reason, an error measure which has gained significant popularity is the FDR
(False Discovery Rate) [1], it is defined as the expected value of the FDP (False
Discovery Proportion):

FDR = E[FDP] = E
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(1)

The FDR has many advantageous features compared to existing error measures,
for example it is adaptive, in the sense that the multiplicity penalty incurred
adapts to the signal in the data and the number of tests [29]. Another reason
for its widespread adoption is the existence of a simple and easy-to-use multiple-
testing procedure which controls the FDR at a pre-specified level ↵. This pro-
cedure, named after Benjamini and Hochberg (BH) [1], works as follows: reject
all hypotheses with p–values Pi  bt⇤, where bt⇤ is the solution of the following
constrained maximization problem:

maximize R(t), s.t.
mt

R(t)
 ↵, t 2 [0, 1] (2)

Here R(t) denotes the number of p–values  t, that is, the number of rejections
if t is used as the rejection threshold.
Beyond its simplicity (computation in just O(n log n) operations; implementation
in R’s stats:p.adjust function takes just four simple lines of code) and the
fact that it “always works” (proven FDR control under independence and diverse
dependence structures [27]), the BH procedure also enjoys theoretical support
through many di↵erent angles. In particular, while the FDR, as defined in (1),
is a frequentist concept, the BH procedure as described by the constrained max-
imization (2) can be motivated in the Bayesian framework with the two-groups
model [30, 31]. For this, assume that each Hi is a random variable with values
in {0, 1}, let ⇡0 = Pr [Hi = 0] 2 [0, 1] and let F0, F1 be the distribution functions
corresponding to null and alternative hypotheses:

Hi ⇠ Bernoulli(1� ⇡0) (3)

Pi|Hi ⇠ (1�Hi)F0 +HiF1 (4)

In other words, the p–value Pi has the marginal distribution



Pi ⇠ F = ⇡0F0 + (1� ⇡0)F1 (5)

Then, the (Bayesian) False Discovery Rate (Fdr) of a multiple testing procedure
rejecting all p–values  t can be defined as:

Fdr(t) =
⇡0F0(t)

F (t)
(6)

Note that for p–values, the standard assumption is that F0(t) = t, i.e. the p–
values are uniformly distributed under H0, thus:

Fdr(t) =
⇡0t

F (t)
(7)

This quantity now has a natural empirical estimator:

dFdr(t) =
c⇡0 t

bF (t)
=
c⇡0 mt

R(t)
(8)

,
where R(t) =

Pm
i=1 1{Pit}, bF (t) is the ECDF and c⇡0 is an estimator of ⇡0.

If we conservatively estimate c⇡0 = 1, then

dFdr(t) =
mt

R(t)
(9)

With the above considerations, the maximization in (2) just reads:

maximize R(t), s.t. dFdr(t)  ↵, t 2 [0, 1] (10)

In other words, the BH procedure estimates the Bayesian Fdr for all rejection
regions of the form [0, t] simultaneously and then chooses a rejection region in
the most greedy fashion. Thus, as observed by Efron [4], the BH procedure
is so exciting because frequentist and Bayesian ideas coincide and because the
conservativeness of the dFdr(t) estimator perfectly counteracts the greediness of
the choice of rejection region.
Even though the BH procedure is more powerful than FWER-based methods,
power can still be limiting in applications, and the multiple testing burden too
high. Most of the theoretical advances have focused on estimating ⇡0, the propor-
tion of null hypotheses, and incorporating that estimate into the multiple testing
procedure. Unfortunately, this only provides a negligible increase in discoveries
in real data sets if ⇡0 is close to 1, which is typically when power matters most.
On the other hand, in practical data analysis, various heuristics have been devel-
oped in di↵erent applied fields (microarrays, eQTLs, mass spectrometry). Below
we review these approaches with a particular emphasis on pointing out possible
caveats when applying these.

1.2 Existing ways to increase power by use of covariates
and a few notes of caution

1.2.1 Independent Filtering

Since the advent of microarrays, one of the most popular ways to increase power
has been the filtering method [32, 33, 34]. Here, beyond the p–values P1, . . . , Pm,
an additional covariate X1, . . . , Xm is assumed to be available for each of the m
tests. The procedure then works as follows: Let x 2 R be a fixed threshold. In
a first step, all hypotheses Hi with Xi < x get filtered and then, in the second
step, the classical BH procedure is applied to the remaining hypotheses.
This approach got heavily criticized for potentially leading to loss of FDR con-
trol [35]. On the other hand, it was generally believed to maintain FDR control



in cases where the covariate X is “non-specific”. Later, Bourgon, Gentleman
and Huber [9] provided some clarification. They first pointed out caveats and
situations in which applying such a filter can actually cause loss of type-I error
control, even when the covariate is “non-specific”. Second, they provided a su�-
cient condition under which such a filtering method is valid: when the covariate
is independent of the p–value under the null hypothesis (Pi ? Xi, i 2 H0), then
the above two-step procedure controls the FDR at the pre-specified level (“Inde-
pendent Filtering”). Multiple examples of such covariates were derived, and the
potential for large increase in the number of discoveries was demonstrated.
However, [9] did not provide a rule or automatable method for the choice of
the filter threshold x. The choice of this threshold has been criticized for being
subjective [26]. What is more important though, is that researchers often do not
realize the role of this parameter in type-I error control. In particular, control
for a fixed choice of the threshold does not imply control over all thresholds
simultaneously. Thus, allowing the researcher to set this parameter can lead to
a problem similar to p–value hacking or researcher degrees of freedom [36]: even
though the statistical produre, as reported in the published manuscript (with a
fixed threshold reported) is valid, the actual validity is contingent on whether the
researcher also tested di↵erent thresholds. To illustrate this further, we consider a
Greedy Independent Filtering procedure, in which the researcher tests all possible
thresholds and chooses the one which maximizes the number of discoveries.

Theorem 1 (Null case counterexample). Assume that we are performing m hy-
pothesis tests based on p–values Pi and covariates Xi with Pi and Xi independent
under the null hypothesis. All of these tests are null, i.e. m = m0. Also assume
that the corresponding p–values P1, . . . , Pm ⇠ U [0, 1] are i.i.d. Then the greedy
Independent Filtering procedure does not control the FDR at level ↵ 2 (0, 1), and
the following lower bound holds:

FDR �
m
X
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This theoretical result is corroborated in the simulation in Figure 2e.

1.2.2 Stratified Benjamini–Hochberg (SBH)

Similarly to the Independent Filtering procedure, another method which has been
often used in practical applications to increase power is the SBH (Stratified BH)
procedure. The SBH procedure also uses an external covariate for each hypothesis
test. In particular, the hypothesis tests are categorized into di↵erent strata based
on this covariate. Then SBH proceeds as follows: The BH procedure is applied
within each stratum at level ↵, and the rejections across the di↵erent strata are
combined. The stratification arises naturally in the case of categorical covariates;
in the continuous case the hypothesis tests are often binned according to increasing
value of the covariate. For example, Degner et al. [37] split the eQTL hypotheses
into 10 bins based on DNAseI sensitivity measurements and then applied Storey’s
q–value procedure within each bin [3].
Like Independent Filtering, the SBH approach can substantially increase discover-
ies [38]. In addition certain asymptotic justifications for the validity of the method
have been provided [38, 28], while Efron [39] has shown the validity from an em-
pirical Bayes / Bayes perspective. Despite these advantages of this approach, we
would like to point out two caveats. First, in terms of controlling the global FDR
(i. e., combined across the di↵erent strata), the SBH method can lead to loss of
frequentist-FDR control in the case of ⇡0 ⇡ 1. This is also shown in Figure 2a.
The second caveat is related to power: the SBH procedure essentially controls the
FDR within each stratum at level ↵. On the other hand, if global FDR control is
of interest, then there is no a-priori reason to assign the same significance (type-I
error budget) to each stratum. Indeed, to maximize power, di↵erent strata should
be prioritized di↵erentially [20].



1.2.3 Weighted Benjamini–Hochberg

A third general approach to increasing the power of multiple testing procedures
is to weight each hypothesis according to the prospects of it actually showing
a measurable true e↵ect. Let w1, . . . , wm � 0 be weights corresponding to the
di↵erent hypotheses, such that

Pm
i=1 wi = m. Now define Qi =

Pi
wi

(with Qi = 1
for wi = 0, Pi 6= 0 and Qi = 0 for wi = 0, Pi = 0). A weighted multiple testing
procedure now operates on Q1, . . . , Qm rather than P1, . . . , Pm. Genovese et al. [6]
showed that applying such a weighted BH procedure, i.e. applying the BH pro-
cedure to Qi instead of Pi, provides finite sample FDR control in the case of
independent p–values.
In fact, this weighted BH method can be seen as a generalization of both the
Independent Filtering and SBH procedures. For the Independent Filtering case,
assume that the filter threshold retains only em of the m hypotheses. Then we
test the remaining p–values based on critical values ↵ i

em , i = 1, . . . , em. This is
equivalent to assigning weights wi = m

em for the retained p–values and wi = 0
for all other p–values and then applying the weighted BH procedure. For the
SBH case, Yoo et al.[28] have shown that asymptotically, the SBH procedure is
equivalent to assigning weights to the hypotheses in each stratum proportional to
the number of rejections (of the BH procedure) in that stratum.
To illustrate how the weighted BH procedure (and other weighted multiple testing
procedures [6]) can increase power, let t be a possibly data-driven threshold.
Then, hypothesis Hi gets rejected if and only if Qi  t or equivalently if Pi  wit.
In other words, hypotheses with wi > 1 get rejected more easily and hence are
prioritized. This prioritization can be motivated as follows: In the two-groups
model (as described in Supplementary Note 1.1), it is assumed that all p–values
follow the same distribution. In practice, it is more reasonable to assume that
there is heterogeneity among the tests, so that each test has a di↵erent prior
probability of being null (⇡0,i) and a di↵erent alternative distribution (F1,i). If
⇡0,i, F1,i, i 2 H were known, it would be possible to construct more powerful
procedures than BH, which does not take this information into account.
Despite these advantages of the weighted BH procedure, in practice it has the
same limitation as the Independent Filtering procedure (and even to a more ex-
tensive degree): It is not clear how to assign weights in a data-driven way, when
oracle knowledge is not available. Given that (at least for the FWER-controlling
procedures) robustness with regard to weights misspecification has been shown
[40], many weighted procedures based on heuristic weight functions [41, 42, 43, 44]
have been proposed. These do not generalize easily to other situations, possibly
not even to other data sets of the same type.

1.2.4 Grouped Benjamini–Hochberg (GBH)

One general approach to make the derivation of data-driven weights for FDR
control more tractable was suggested in [10], called the GBH (Grouped BH) pro-
cedure. Here, the authors assumed that the p–values were separated a-priori
into G groups (strata). Rather than searching for an optimal weight for each
hypothesis, all hypotheses in the same group are assigned the same weight and
the specification of only G weights is required. A quasi-optimal heuristic for this
assignment was proposed:

wg / b⇡1,g

b⇡0,g
(11)

Here b⇡0,g denotes the estimated proportion of null hypotheses in group g and
b⇡1,g = 1� b⇡0,g. As a ⇡0 estimator, the TST estimator [2] and the LSL estimator
[45] were suggested.
Here we also need to point out two caveats. First of all, with the TST estimator,
the FDR is again not controlled at a pre-specified level ↵ in the ⇡0 = 1 case
(Figure 2e). Also, the heuristic, quasi-optimal weight assignment can actually



lead to loss of power, even compared to the BH procedure, when the distribution
of the alternatives di↵ers across strata (Supplementary Fig. 2d,f).
Zhao et al. [46] aimed to improve the GBH method by starting with an application
of BH and GBH and then assigning data-driven weights at fixed thresholds. This
is achieved using an approach similar to our IHW-naive approach: The number of
rejections is maximized subject to a fixed threshold (maximum of GBH and BH
thresholds), rather than at a constrained plugin FDR value. No implementation
is available though for the underlying optimization, and the choice of the GBH
and BH thresholds is arbitrary.

1.3 Local fdr based approaches

In the Introduction it was mentioned that most theoretical work on increasing
power has focused on ⇡0 estimation, while practical applications have used meth-
ods based on external covariates. Nevertheless, the idea of including covariates to
increase power in multiple testing has been a lot more prevalent in the context of
the local false discovery rate (fdr). This quantity is a local analog of the Bayesian
Fdr (6) and is defined as follows (if the Lebesgue densities f0, f1 and f of F0, F1

and F exist):

fdr(t) =
⇡0f0(t)

f(t)
(12)

In the stratified case, based on local fdrs, Ochoa et al.[21] considered the following
constrained optimization problem under oracle knowledge:

maximize E [R(t1, . . . , tG)] , s.t. Fdr(t1, . . . , tG) =
E[V (t1, . . . , tG)]

E[R(t1, . . . , tG)]
 ↵ (13)

R(t1, . . . , tG) denotes the number of rejections of a procedure which rejects all
p-values in group g which are less than or equal to tg. Similarly V (t1, . . . , tg)
denotes the false rejections of such a procedure.
Now let Cfdrg be the local fdr function conditional on belonging to stratum g.
Then a necessary condition for maximization of (13) (in the interior of [0, 1]G) is
that Cfdrg(tg) = Cfdrj(tj) 8 j, g 2 {1, . . . , G} [21]. Based on this result, every
optimal procedure is of the form: reject hypothesis Hi which belongs to stratum g
if Cfdrg(Pi)  q for a common, overall choice of q 2 [0, 1]. To achieve global FDR
control at level ↵, q has to be chosen so as to fulfill the constraint FDR  ↵. Cai
and Sun [20] considered exactly such multiple testing procedures and also showed
that they are optimal in terms of minimizing the False Nondiscovery Rate (Fndr)
subject to Fdr control (where Fndr and Fdr take the Bayesian definition). In
addition, they provided a data-driven way of applying this oracle multiple testing
procedure, which works as follows:

First, estimate the conditional local fdrs \Cfdrg(Pi) for all hypotheses Hi in stra-
tum g, pool these estimates over all strata together and form their order statistics
dCfdr(i). Also let

j = max{i | 1
i

m
X

i=1

dCfdr(i)  ↵}. (14)

Then all hypotheses corresponding to dCfdr(1), . . . , dCfdr(j) get rejected.
A lot of further local fdr research has attempted to incorporate continuous covari-
ates. One approach, which is interesting due to similarity to ours is the Covmod
method [24], which also uses a covariate independent of the p–values under H0 to
stratify the hypotheses. The authors make a parametric assumptions regarding
the form of the distribution of the p–values within each bin: it is assumed to be
a Beta-Uniform mixture. Fitting is done using an approximate Bayesian method,
and information about parameters is shared across bins by choice of appropriate



priors, for example, for the ⇡0,g (proportion of null hypotheses in the g-th bin):

f(⇡0,1, . . . ,⇡0,G) / exp
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G
X

g=2

�

logit(⇡0,g)� logit(⇡0,(g�1))
�2

!

(15)

with logit(p) = log
⇣

p
1�p

⌘

and a regularization parameter � > 0.

A heuristic choice is suggested for the regularization parameter, but the user
also has to manually choose a tuning parameter. Unfortunately, in our hands the
available implementation of Covmod was not numerically stable and aborted with
segmentation faults in many cases.
On the other hand, some approaches have been developed which do not rely on
binning. A seminal contribution was made by Ploner et al. [22], whose key idea
was to generalize the local fdr notion to higher dimensions (e. g., 2 dimensions)
by:

fdr2d(z1, z2) = ⇡0
f0(z1, z2)

f(z1, z2)
(16)

Nevertheless, the authors acknowledged the fact that routine application of fdr2d
is limited by the di�culty of non-parametric ratio smoothing in higher dimensions.
No automatic choice of smoothing parameter was provided, and the user was
encouraged to inspect certain diagnostic plots.
Further work in this direction makes estimation possible by imposing additional
parametric assumptions (just as the Covmod method). For example, the FDR-
regression method [23] assumes that all hypotheses have the same alternative
distribution and a Gaussian error model, while a logistic link with the covariate
is assumed. The method of Zablocki et al. [47] assumes that the absolute z-scores
follow a folded Normal-Gamma mixture and even more assumptions are imposed
onto the covariate. Beyond the limitation of these parametric assumptions, the
methods also su↵er from loss of FDR control. For example, Zablocki et al. [47]
point out the overoptimism when ⇡0 ⇡ 1.

1.4 Single-index modulated multiple testing

Du et al.[26] give another partial solution to the problem, by assuming that the
covariate X is also a p–value. Thus, instead of a p–value and filter-statistic tuple
(P,X), they consider a bivariate p–value (P 1, P 2). Given an angle ✓ 2 [0, ⇡

2 ], this
bivariate p–value is projected onto a single index P (✓) defined by:

P (✓) = �(cos(✓)��1(P 1) + sin(✓)��1(P 2)), (17)

where � denotes the standard normal cumulative distribution function.
The authors drop the assumption of conditional independence of the two p–values
under H0 and instead assume that the bivariate p–value distribution is symmet-
ric. Next, for fixed ✓, ⇡0 and the null distribution of P (✓) are estimated non-
parametrically (or parametrically under stronger assumptions) and a BH-type
procedure is applied. The projection direction ✓ is calculated by applying the
above procedure for each ✓ and choosing the one that maximizes the number of
rejections. Under certain conditions (most importantly ⇡0 < 1), asymptotic FDR
control is proven.
This method is similar to IHW-naive since the data-driven choice of the parameter
✓ is achieved by maximizing the number of rejections.



Supplementary Note 2: Full description of the IHW algorithm

2.1 IHW-naive

2.1.1 Algorithm

To derive the method, we assume that we have access to p–values P = (P1, . . . , Pm)
and a covariate X = (X1, . . . , Xm), which is independent of P under H0. Our
starting point for an algorithm (what in the paper is called the “naive algorithm”)
for data-driven choice of weights consists of the following steps:

• Group the hypothesis tests into G bins based on the values of the covari-
ate X. Denote by mg the number of hypotheses in the g-th bin, so that
PG

g=1 mg = m.

• For each possible weight vector w = (w1, . . . , wG), i. e., for each w that sat-
isfies wi � 0 and

Pm
g=1 wgmg = m, apply the group-weighted BH procedure

with this vector and calculate the total number of rejections. Then choose
the1 vector w⇤ that maximizes the number of rejections.

• Report the result of the grouped-weighted BH procedure with the optimal
weight vector w⇤.

2.1.2 The idea behind the algorithm

This is essentially a greedy generalization of the BH procedure, as formulated
above in terms of a constrained maximization (Equation (10)). In particular,
here the plugin-FDR estimator introduced in Equation (9) corresponds to

dFdr(t,w) =
mt

R(t,w)
=

PG
g=1 mgwgt

R(t,w)
(18)

We have used the notation R(t,w) for the number of rejections of the proje-
dure that rejects all hypotheses below tg := wgt in bin g. Then the constrained
maximization takes the following form:

maximize R(t,w), s.t. dFdr(t,w)  ↵ (19)

We can also reparametrize the problem by tg = wgt, so that the hypotheses in
each stratum get rejected based on a di↵erent thresholds. Then this procedure
can be described as follows:

dFdr(t1, . . . , tG) =

PG
g=1 mgtg

R(t1, . . . , tG)
(20)

maximize R(t1, . . . , tG), s.t. dFdr(t1, . . . , tG)  ↵, tg 2 [0, 1] (21)

Note that this is just the maximization problem (13), which was solved in [21]
in terms of the local fdr, expressed using the empirical quantities replacing the
expected values (and upper-bounding the proportion of null hypotheses by 1).
Finally note that above we started from a formulation in terms of a weight vector
w and a threshold t and derived the method in terms of individual thresholds tg.
This procedure can also be reversed, i.e. we can derive w and t from tg. For this,
first notice that from

tg = wgt and
G
X

g=1

mgwg = m (22)

it follows that
G
X

g=1

mgtg =
G
X

g=1

mgwgt = mt (23)

1

If the maximum is not unique, then just choose one of the optimal w randomly.



Now if tg = 0 8 g 2 {1, . . . , G}, then t = 0 and we can pick an arbitrary weight
vector, e. g., wg = 1. Otherwise t > 0 and the thresholds can be converted back
to weights by

wg =
tg
t
=

mtg
PG

g=1 mgtg
(24)

2.2 IHW

We modify naive IHW to derive a procedure that is more scalable and has better
finite sample properties, in 3 steps E1-E3.

2.2.1 Modification E1

Let bFg be the ECDF of the p-values in stratum g. Then it holds that Rg(t) =

mg
bFg(t) 8 t 2 [0, 1]. Given that R(t1, . . . , tG) =

PG
g=1 Rg(tg) =

PG
g=1 mg

bFg(tg),
we can rewrite equations (20) and (21) as follows:

dFdr(t1, . . . , tG) =

PG
g=1 mgtg

PG
g=1 mg

bFg(tg)
(25)

maximize
G
X

g=1

mg
bFg(tg), s.t. dFdr(t1, . . . , tG)  ↵, tg 2 [0, 1] (26)

From a more theoretical point of view, note that bFg is just an estimator of the
distribution function Fg in stratum g. In other words, at least heuristically we
expect that our multiple testing procedure approximates the oracle procedure
in which Fg is known. The asymptotic meaning of this will be made precise
in our proof of asymptotic consistency of IHW in Supplementary Note 7. It is
also instructive to compare to the oracle formulation (13) considered in Ochoa
et al.[21].
For our first modification (E1), rather than estimating Fg using the ECDF, we

use the Grenander estimator fFg, i. e., the least concave majorant of the ECDF
cFg. This can be calculated e�ciently by applying the pooled adjacent violator
algorithm (PAVA) in O(mg log(mg)) time for each stratum. Thus we impose the
assumption that the distribution functions Fg are concave (i. e., have a decreasing
density); this is a common and reasonable assumption in multiple testing [5].
This yields the following optimization problem:

gFdr(t1, . . . , tG) =

PG
g=1 mgtg

PG
g=1 mg

eFg(tg)
(27)

maximize
G
X

g=1

mg
eFg(tg), s.t. gFdr(t1, . . . , tG)  ↵, tg 2 [0, 1] (28)

Elementary reformulations, allow us to express this problem as follows:

minimize H(t) = �
G
X

g=1

mg
fFg(tg) s.t.

H1(t) =
G
X

g=1

mg(tg � ↵fFg(tg))  0 (29)

tg 2 [0, 1]

Note that H and H1 are convex functions since fFg are concave, thus the opti-
mization problem is convex.
Once we have these thresholds tg, we can recover the weights wg by (24) and
apply the weighted Benjamini-Hochberg procedure.



Remark 1: It was pointed out to us, that our procedure could be too conservative, be-
cause the Grenander estimator of the distribution function often overestimates its values
close to 0. We want to clarify here that the Grenander estimator only flows into the
estimation of the weights; for the final p-value adjustment, the ECDF is used, since we
just apply the standard weighted Benjamini-Hochberg procedure.

To make this more precise, recall the IH related optimization scheme (where this time
we use a parametrization in terms of weights):

• For IHW naive, as in equation (26), we maximize over t 2 [0, 1], w weight:

GX

g=1

mg
bFg(wgt) s.t. dFdr(w

1

t, . . . , wgt)  ↵

• For IHW with Grenander, as in equation (28), we maximize over t 2 [0, 1], w
weight:

GX

g=1

mg
eFg(wgt) s.t. gFdr(w

1

t, . . . , wgt)  ↵

Now IHW with (E1) (and without modifications E2, E3), is actually neither of these! It
is a 2-step approximation to solving (26) with the help of (28). It works as follows:

• Step 1: Solve (28) - which can be done e�ciently since it is a convex problem -
and get ew and t̃, which are solutions to the optimization problem. t̃ will not be
needed in the following.

• Step 2: Solve (26) with w fixed to ew. This yields t̂ and can be solved e.g. by
applying BH to the weighted p-values with weights ew. Thus (t̂, ew) is used as the
approximate solution to (26), which is a feasible point and defines the rejection
thresholds.

In summary: (28) is used only to learn ew, while weighted BH is used to learn t̂. There-
fore, biases due to the Grenander estimator might influence the weights, but not the
final FDR estimator, which is still based on the ECDF! This allows us to combine com-
putational e�ciency, while also retaining the statistical properties of the ECDF, as it
pertains to FDR controlling procedures.

2.2.2 Modification E2

We randomly split the hypotheses into nfolds folds. Splitting is done randomly,
independently of the p-values and covariates of the individual tests. For each fold
we proceed as follows:
We apply the optimization problem (29) to the hypothesis tests of the remaining
nfolds � 1 folds. This yields a weight vector ew = ( ew1, . . . , ewG). Hypotheses which
lie in stratum g of the held-out fold are then assigned weight ewg.
Thus the hypotheses in each fold get assigned their weights. In total, we obtain
a nfolds ⇥G table of weights: one weight for each combination of fold and bin.
The key idea for modification E2 is that under our setting we can assume ex-
changeability of the p-value, covariate pairs (Pi, Xi). This is a much milder as-
sumption than exchangeability of the p-values Pi. If this type of exchangeability
holds, then we should be able to recover a good approximation to the optimal
weight function by optimizing over a disjoint set of hypotheses; thus preventing
“overfitting”.
In particular, note that with E2 the weight assigned to a hypothesis does not
directly depend on its p-value, but only on its covariate and on the p-values in
the “training” folds. If the hypothesis tests are independent of each other, then
the p-value Pi is independent of its assigned weight wi under the null hypothesis,
because the covariate is independent of the p-value under the null hypothesis.
This is made more precise in Supplementary Note 6.2, where we prove that a
variant of IHW, IHW-Bonferroni, controls the FWER.



2.2.3 Modification E3

Modification E3 adds further constraints to (29) such that the learning of the
weight function can be improved and thus that the weights learned with nfolds�1
folds generalize to the held-out fold.
To regularize our problem for ordered covariates, we add the additional constraint
(“total variation” penalty) for a regularization parameter � � 0:

G
X

g=2

|wg � wg�1|  � (30)

) m

G
X

g=2

|tg � tg�1|  �

G
X

g=1

mgtg (31)

This constraint imposes that successive strata should not be too di↵erent. Adding
(31) to optimization problem (29) maintains convexity of the program. Note that
� = 0 yields uniform weights, while � ! 1 corresponds to the unconstrained
version. We will denote by IHW(�) the IHW procedure with modifications E1,
E2 and total variation constraint (30), so that IHW(1) is IHW with E1 and E2.
In many situations we would like to determine a suitable value of � from the
data (a model selection problem). To ensure that Pi will still be independent
of its assigned weight wi under the null hypothesis (E2), this means that we
have to learn the regularization parameter for each training set of nfolds � 1 folds
individually. We then apply a nested cross validation step, which proceeds as
follows for each training split:
We specify a finite grid ⇤ of regularization parameters. For each value � 2 ⇤
we apply IHW(�) to the training set hypotheses. In other words, the training
set hypotheses get further split randomly into nfolds,CV folds and (E2) is applied.
We then choose the � which led to the maximum number of rejections in the
training set. In this situation, we can repeat the above with di↵erent random
splits (nsplits,CV splits) and choose the � which led to the maximum number of
rejections on average in the training set.
For an unordered covariate we can proceed in exactly the same way but instead
use the constraint

PG
g=1 |wg � 1|  �. This penalizes deviations from uniform

weights.

2.3 Optimization

Here we describe how the optimization tasks (21) and (29), possibly with con-
straint (31), can be solved using a Mixed-Integer Linear Programming (MILP)
solver (for IHW-naive) or a Linear Programming solver respectively (for IHW).

2.3.1 MILP optimization without regularization

Starting from the maximization problem (21), we can equivalently describe it by:

maximize
G
X

g=1

Rg(tg) s.t.

tg 2 [0, 1]

↵

G
X

g=1

Rg(tg) �
G
X

g=1

mgtg

Similar to the proof in the original BH paper [1], we observe that Rg(·) only
changes its value at P g

i , i 2 {1, . . . ,mg} (the p-values in bin g). Thus it is enough
to restrict our attention to these values of t (and t = 0).
For g = 1, . . . , G, we have (mg + 1) ordered values (group-wise order statistics of
the p–values):

0 =: P g
(0)  P g

(1)  . . .  P g
(mg)

(32)



Since Rg(P
g
(i)) = i almost surely, we get the following equivalent characterization

(i.e. we write t as a function of Rg instead of the other way around)

maximize
G
X

g=1

Rg s.t.

Rg 2 {0, . . . ,mg}

↵

G
X

g=1

Rg �
G
X

g=1

mgP
g
(Rg)

To express this problem as a MILP, we introduce the binary variables zgj , j 2
{1, . . . ,mg}, g 2 {1, . . . , G} which satisfy the linear constraints:

zg1 � zg2 � . . . � zgmg

In the final formulation it will hold that Rg =
Pmg

j=1 z
g
j , since the decision (binary)

variable zgj denotes whether the j-th lowest p–value in group g will be rejected.
Also define ygk = P g

(k) � P g
(k�1), k = 1, . . . ,mg. Then we can solve the equivalent

MILP:

maximize
G
X

g=1

mg
X

j=1

zgj s.t.

zgj � zg2 � . . . � zgmg
2 {0, 1}, g 2 {1, . . . , G}

↵

G
X

i=1

mg
X

j=1

zgj �
G
X

g=1

mg
X

j=1

mgy
g
kz

g
j

2.3.2 MILP optimization with regularization

To enforce the constraint (31) we also have to introduce new variables tg with
tg �Pmg

j=1 y
g
kz

g
j and reformulate the FDR bound in terms of these new thresholds

tg. The final problem then has the following form:

maximize
G
X

g=1

mg
X

j=1

zgj s.t.

zgj � zg2 � . . . � zgmg
2 {0, 1}, g 2 {1, . . . , G}

tg �
mg
X

j=1

ygkz
g
j , g 2 {1, . . . , G}

m

G
X

g=2

|tg � tg�1|  �

G
X

g=1

mgtg

↵

G
X

i=1

mg
X

j=1

zgj �
G
X

g=1

mgtg

2.3.3 LP optimization without regularization

To solve problem (29), we observe that the Grenander estimator fFg is a piecewise-
linear, concave function. There exists a finite index set Ig and real numbers agi , b

g
i

for i 2 IG such that:
fFg(t) = min

i2Ig
{agi + bgi t} (33)

For each tg 2 [0, 1] we introduce a new variable fg 2 [0, 1] (g = 1, . . . , G) and
add the constraints fg  agi + bgi tg for i 2 Ig. Then we just need to maximize

the linear function
PG

g=1 mgfg under these linear constraints and the plugin-FDR

control constraint
PG

g=1 mg(tg � ↵fg)  0. This is a linear program.



2.3.4 LP optimization with regularization

The constraints (31) can be added directly to the linear program of the formulation
with the Grenander estimator using standard methods for modelling absolute
values in linear programming.

2.4 Choosing the number of bins

The number of bins depends on two factors: First, within each bin there should
be enough p-values so that the distribution function can be estimated well by its
Grenander estimator. In practice we recommend having at least 1000 p-values
within each bin. Second, the di�culty of optimization problem (29) depends on
the number of bins.



Supplementary Note 3: Real-data examples

3.1 DESeq2 (Bottomly) example

For the RNA-Seq example we used the dataset of Bottomly et al. [13], which
we downloaded from the Recount project [14]. p-values were calculated using
DESeq2 [12] with default settings, for the design ⇠ cell + dex. We used the mean
of normalized counts for each gene, across samples, as the informative covariate.
Hypotheses were stratified into 13 equally sized bins (i. e., with the same number
of hypotheses) based on the covariate. IHW was used with settings nfolds =
nfolds,CV = nsplits,CV = 5. This was repeated for nominal levels ↵ 2 [0.05, 0.1]
using an equidistant grid with 5 values.
We compared the result to that of using the Benjamini–Hochberg method.

3.2 Proteomics (Gygi) example

We used the dataset in [15] (from their Supplementary Table 1), in particular,
their Welch t-test p-values, and the number of peptides quantified as the covariate.
Hypotheses were stratified into 4 equally sized bins (same number of hypotheses)
based on the covariate. IHW was used with parameters nfolds = nfolds,CV =
nsplits,CV = 5, and the regularization parameter was selected from a grid of 20
equidistant values in � 2 [0, 3]. This was repeated for nominal levels ↵ 2 [0.05, 0.1]
(equidistant grid with 5 values).
We compared the result to that of using the Benjamini–Hochberg method.

3.3 hQTL example

For the hQTL example, we used the dataset described in [16] and looked for asso-
ciations between SNPs and the histone modification mark (H3K27ac) on human
Chromosome 21. p-values for association were calculated as described in the orig-
inal paper [16] using Matrix eQTL [48]. As a covariate we used the linear genomic
distance between the SNP and the ChIP-seq signal.
We stratified hypotheses based on the distance in 10 kb bins up to 300 kb, 100 kb
bins up to 1 Mb, 10 Mb bins for the rest of the hypotheses. We used IHW with
nfolds = 5 and without the E3 step, i. e., we set � = 1. This was repeated for
nominal levels ↵ 2 [0.05, 0.1] (equidistant grid with 5 values).
We compared the result to Benjamini–Hochberg and Independent Filtering with
thresholds set to 10 kb, 200 kb and 1 Mb.



Supplementary Note 4: Simulation studies

4.1 Implementation of benchmarked methods

4.1.1 IHW-naive

For IHW-naive we stratified all hypotheses into 20 bins of equal size. To solve the
underlying MILP problem we used the Gurobi solver version 6.5 [49].

4.1.2 IHW

For IHW we also stratified all hypotheses into 20 bins of equal size. For the under-
lying LP problem we used the open-source SYMPHONY solver of the COIN-OR
project [50]. A total variation penalty of the weights was used with the regulariza-
tion grid � 2 {0, 1, 2.5, 5, 10, 20,1} and nfolds = 5, nfolds,CV = 5, nsplits,CV = 1.

4.1.3 BH

For BH we used the standard p.adjust function with method BH in R’s stats

package.

4.1.4 Greedy Independent Filtering

We applied the Greedy Independent Filtering procedure by applying BH for each
of the m relevant filter statistic thresholds and choosing the threshold that maxi-
mized rejections. Then we applied the independent filtering procedure with that
threshold [9].

4.1.5 LSL-GBH, TST-GBH

The Group Benjamini–Hochberg (GBH) [10] procedure requires stratification of
the hypotheses into bins (i. e., categorical covariates). For the simulations we
stratified into 20 bins of equal size based on increasing value of the covariate.
The LSL-GBH and TST-GBH procedures were implemented as described in the
publication [10].

4.1.6 SBH

For the stratified BH procedure, hypotheses were stratified as for the GBH pro-
cedure. Within each stratum the BH procedure was applied at level ↵, and the
rejections across all strata were pooled together.

4.1.7 Clfdr

For the conditional local fdr (CLfdr) [20] procedure, hypotheses were stratified as
for the GBH procedure. Within each bin the local fdrs (i. e., alternative densities
and ⇡0) were estimated using the R package fdrtool [5]. Note that the authors
of [20] suggested using a di↵erent estimator of the local fdr, namely the one in [51].
However, since the latter makes a Normal assumption and operates on z-scores
rather than p-values, we opted for fdrtool.

4.1.8 FDRreg

For FDRreg [23] we used the implementation available on the first author’s github
site (http://github.com/jgscott/FDRreg). The FDRreg method has multiple
tuning parameters. We used settings similar to the ones employed in these au-
thors’ study of neural synchrony detection [23]. In particular, the design matrix
consisted of expanding the covariate in a cubic B-spline basis with 3 degrees of
freedom. The regularization parameter � for the ridge penalty was set to � = 0.01.
In addition, in contrast to the other methods benchmarked here, FDRreg operates
on z-scores rather than p-values. To make comparison feasible, we converted each

http://github.com/jgscott/FDRreg


p-value P into a z-score with the formula Z = ��1(P ), where � is the cumulative
distribution of a standard Normal random variable. Also FDRreg estimates the
conditional fdr in both tails of the z-score distribution, while the original p-values
do not contain this two-tailed information. Therefore, in order to avoid spurious
rejections caused by estimation on the right tail of the distribution, where p-values
� 0.5 get mapped, we set the local fdr of p-values � 0.5 to 1. This makes the
comparison more fair, since none of the other methods rejected p-values � 0.5 in
our simulation settings.

4.2 Simulations

For our experimental results (numerical simulations), we used three simulation
scenarios:

4.2.1 All nulls simulation

For the all nulls simulations, we drew independent uniform random variables (for
i 2 {1, . . . ,m}):

Pi ⇠ U [0, 1]

Xi ⇠ U [0, 1]

Hi = 0

We used m = 20000 and 4000 Monte Carlo replications. The methods were
evaluated for nominal FDR control values ↵ 2 [0.01, 0.1] (equidistant grid with
10 values).

4.2.2 E↵ect size simulation

The two-sample t-test was applied to Normal samples (n = 2 ⇥ 5, �=1) with
either the same mean (nulls) or means di↵ering by the e↵ect size ⇠i (alternatives).
The fraction of true alternatives was 0.05. The pooled variance was used as the
covariate.
We used m = 20000 and 1000 Monte Carlo replications. The simulations were
repeated for 20 values of the simulation parameter ⇠ 2 [1, 2.5] (equidistant grid).
The nominal ↵ was set to 0.1.

4.2.3 Size investing simulation

For the size investing simulation simulations, we drew independent uniform ran-
dom variables (for i 2 {1, . . . ,m}):

Hi ⇠ Bernoulli(⇡1)

Xi ⇠ U [1, ⇠max]

Zi ⇠ N (HiXi, 1)

Pi = 1� �(Zi)

� denotes the standard Normal distribution function. Pi and Xi were used as the
p-values and covariates respectively. We used ⇡1 = 0.1, m = 20000 and 500 Monte
Carlo replicates. The simulations were repeated for 10 values of the simulation
parameter ⇠max 2 [3, 6] (equidistant grid). The nominal ↵ was set to 0.1.

4.3 Evaluation of simulations

We used the following metric to evaluate the methods for power and FDR control.
For a fixed multiple testing method, let �i 2 {0, 1} indicate whether the method
rejected hypothesis i (�i = 1) or whether it did not (�i = 0). Then we defined
power as

Pow = E


Pm
i=1 �iHi

1 _Pm
i=1 Hi

�



and the FDR as

FDR = E


Pm
i=1 �i(1�Hi)

1 _Pm
i=1 �i

�

Both of these quantities were estimated from their empirical counterparts based
on the Monte Carlo replications.



Supplementary Note 5: tdr and size-investing

Here we illustrate how size-investing strategies can be derived in terms of tdr
(equivalently in terms of fdr). For this, we will simplify things by reducing the
multiple testing problem to that of testing two hypotheses H and eH (the case of
m > 2 hypotheses follows by just throwing in more notation).
Let P and eP be the p-values for the two hypotheses and F (t) = ⇡0t+(1�⇡0)F1(t),
eF (t) = f⇡0t + (1 � f⇡0)fF1(t) the corresponding distribution functions. We also
assume that we have more power to detect H than eH, which we define as F (t) >
eF (t) 8 t.

For an optimal procedure it would now hold that fdr(t) = gfdr(et) = ↵ [21] for
whichever value of ↵ is specified. Size-investing can now be explained as follows:

• For ↵ small enough, because F > eF it follows from fdr(t) = gfdr(et) = ↵ that
t � et, i.e. we assign more weight to H than to eH. In terms of size-investing,
this corresponds to the case where our type-I error budget it small enough,
that we to try to assign most of it to the more powerful hypothesis.

• On the other hand, as we increase our budget ↵, it is possible that eventually
from fdr(t) = gfdr(et) = ↵ it will follow that t  et, i.e. we assign higher
weight to eH. This corresponds to the case where we have enough type-I
error budget and enough power in H, that we should prioritize the test
with the lower power, namely eH.

In other words, for size-investing to occur, the fdr and gfdr curves have to cross.
But in a particular case, this cannot happen, namely when F1 = fF1 and F > eF is
only due to ⇡0 <f⇡0. In this case, fdr(t) = gfdr(et) = ↵ ) t � et for all values of ↵.
As a consequence, any method which assumes that the alternative distribution is
the same for all hypotheses and that only ⇡0 varies will not be able to apply a
size-investing strategy.
A graphical explanation of these ideas is shown in Supplementary Figure 3.



Supplementary Note 6: IHW-Bonferroni for FWER control

In this section we show how the IHW ideas presented in the context of FDR
control can be adapted in a straightforward way to Bonferroni’s multiple testing
procedure. This yields a new, powerful FWER controlling procedure, which we
also implemented in the IHW package. We prove that this Bonferroni method
with data-driven weights has finite sample FWER control.

6.1 Motivation and description

To extend the previous ideas to FWER control, we first quickly consider the classic
approaches, which do not take covariate information into account. An analogon
to the equivalence theorem (10) can in many cases be applied. In particular, many
FWER controlling procedures can be interpreted as follows:
Reject all p-values  t⇤, where t⇤ solves the optimization problem:

maximize R(t), s.t. [Fwer(t)  ↵, t 2 [0, 1], (34)

and [Fwer(t) is an appropriate conservative estimator of FWER(t). In addition,

things often are very simple, because [Fwer(t) is deterministic for many FWER

controlling procedures. (In contrast, for FDR control, dFdr(t) will be random,
c. f. (9).) For example, assuming that the p-values are independent leads to an

estimator [Fwer(t) that corresponds to the Šidák correction.
For the Bonferroni procedure the FWER is upper bounded by Markov’s inequality,

FWER(t) = Pr(V (t) � 1)  E[V (t)]  mt. (35)

In other words, it uses [Fwer(t) = mt in Equation (34). The optimization problem
has the analytic solution t⇤ = ↵

m .
From this it is clear how optimal weights/thresholds can be chosen in the stratified
case, in analogy to (21) for FDR control:

maximize R(t1, . . . , tG), s.t.
G
X

g=1

mgtg  ↵, tg 2 [0, 1] (36)

Modification (E1) is now readily applicable and as in (29), we get the convex
optimization problem:

minimize H(t) = �
G
X

g=1

mg
fFg(tg) s.t.

H1(t) =
G
X

g=1

mgtg  ↵ (37)

tg 2 [0, 1]

After solving this optimization problem, we recover thresholds t1, . . . , tG which
can be converted to weights via equation (24). Then we can apply the weighted
Bonferroni procedure [6] with these weights. Modifications (E2) and (E3) are also
immediately applicable. We call the resulting procedure IHW-Bonferroni.



6.2 Proof of finite sample FWER control

Theorem 2. Let Hi 2 {0, 1} be deterministic, Pi 2 [0, 1] and Xi 2 X random
and assume that (Pi, Xi), i 2 {1, . . . ,m} are mutually independent. In addition,
assume that Pi ? Xi | Hi = 0 and that Pi ⇠ U [0, 1] | Hi = 0. Then, the IHW-
Bonferroni procedure controls the FWER at level ↵:

FWERIHW�Bonferroni  ↵

Remark 2: Here, for simplicity of the proof we assume that the hypotheses are determin-
istic. The random case can be handled similarly after assuming that (Pi, Xi, Hi), i 2
{1, . . . ,m} are mutually independent.

Proof. First we will show that Pi ? Wi | Hi = 0. For this let i such that Hi = 0
and assume that hypothesis i gets assigned to fold l during step (E2) of IHW-
Bonferroni. Also denote by P�l, resp. X�l the vector of p-values, resp. covariates
that were not assigned to fold l. Also let L be the cardinality of these vectors.
Notice that step (E2) provides a measurable function hl : X ⇥ XL ⇥ [0, 1]L, such
that:

Wi = hl(Xi,X�l,P�l)

But by the assumptions of the theorem and because Hi = 0, it follows that Pi

is independent of (Xi,X�l,P�l). Therefore it also follows that Pi ? Wi and
by choice of i we get our desired statement. We can now conclude our proof as
follows:

FWER = Pr (V � 1)

= Pr
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Remark 3: Note that the proof can be generalized. Rather than requiring joint in-
dependence of (Pi, Xi, Hi), i 2 {1, . . . ,m} it is already su�cient if (Pl,Xl), l 2
{1, . . . , n

folds

} are mutually independent, where the vectors Pl,Xl correspond to hy-
potheses assigned to the l-th fold. This implies that IHW and IHW-Bonferroni could
be easily extended to account for this dependence structure (when it is known), rather
than randomly assigning folds as in (E2).



6.3 Empirical performance of IHW-Bonferroni

We further demonstrate the theoretical results in Subsection 6.2 using the same
simulation scenarios as described for IHW in Supplementary Note 4. In partic-
ular, we benchmark IHW-Bonferroni (with settings as described in Subsubsec-
tion 4.1.2, where the nominal FDR control level ↵ is instead the nominal FWER
control level) against Bonferroni (p.adjust function with method bonferroni in
R’s stats package).
The simulation results are shown in Supplementary Figure 5. Under all three
simulations scenarios, both Bonferroni and IHW-Bonferroni control the FWER,
as theoretically expected. In addition, IHW-Bonferroni increases power compared
to Bonferroni; the improvement can be dramatic.



Supplementary Note 7: Proof of asymptotic consistency of IHW

In this section, we want to prove that IHW is asymptotically consistent, i. e., that
IHW controls the FDR at the nominal level ↵ as the number of hypotheses be-
comes large. The main result is stated in Theorem 4. To make the proof more
readable, we use the simplified setup already used for the presentation of the al-
gorithm in Section 2. In particular, we assume that we have a discrete covariate
that takes on a finite number of levels g = 1, . . . , G, and to be more precise we
consider the grouped setting as in [10, 46]. This is also how IHW is operational-
ized for continuous covariates by means of stratification.

Thus, assume that we have G strata and in the gth stratum we have mg p-
values P g

1 , . . . , P
g
mg

, g = 1, . . . , G. Of these, m0,g correspond to null hypothe-
ses and mg � m0,g to alternatives. The setup we consider is conditional on
the true status Hg

i of each hypothesis. Given a threshold tg 2 [0, 1] we write
Vg(tg) =

Pmg

i=1 1{P g
i tg,H

g
i =0} for the number of falsely rejected hypotheses and

Rg(tg) =
Pmg

i=1 1{P g
i tg} for the number of all rejected hypotheses P g

i  tg in
stratum g.

We also assume that the two-groups model holds within each stratum as follows:

P g
i | Hg

i = 0 ⇠ U [0, 1]

P g
i | Hg

i = 1 ⇠ F1,g

Note that the uniform distribution under the null is implied by the conditional
independence of covariates and p-values under the null, while the alternative dis-
tribution F1,g, g = 1, . . . , G will in general depend on g, because the covariate
would have been selected to be associated with power.

For our proofs, we will also require the following assumptions:

Assumption 1. The distribution under the alternative F1,g is continuous 8g 2
{1, . . . , G} and F1,g(t) > 0 8 t 2 (0, 1].

Assumption 2.

8 g 2 {1, . . . , G} :
mg

m
! ⇡̃g as m ! 1, ⇡̃g 2 (0, 1)

Assumption 3.

8 g 2 {1, . . . , G} :
m0,g

mg
! ⇡0,g as m ! 1, ⇡0,g 2 (0, 1)

Assumption 4. The hypotheses within each group satisfy the weak dependence
criterion, in other words for all g 2 {1, . . . , G}, the following holds:

1.
Vg(t)

m0,g
! t, m ! 1

2.
Rg(t)� Vg(t)

mg �m0,g
! F1,g(t), m ! 1

almost surely for each t 2 (0, 1].

Remark 4: The above assumptions are standard for proving asymptotics for FDR con-
trol. They are very similar to the assumptions in [3], extended to the grouped setting.
They are also similar to the assumptions made in [10]. Our proof closely follows the
techniques in [3], the results of which we generalize to the grouped setting.



Remark 5: In Assumption 2 we introduced ⇡̃g. Intuitively, ⇡̃g is the prior probability of
a hypothesis belonging to stratum g.

We quickly repeat the most important notation, most of which has already been
introduced above and in Section 2:

• V (t1, . . . , tG) =
G
X

g=1

Vg(tg) =
G
X

g=1

mg
X

i=1

1{P g
i tg,H

g
i =0}

• R(t1, . . . , tG) =
G
X

g=1

Rg(tg) =
G
X

g=1

mg
X

i=1

1{P g
i tg}

• dFdr(t1, . . . , tG) =

G
X

g=1

mgtg

R(t1, . . . , tg) _ 1

• FDR(t1, . . . , tG) = E


V (t1, . . . , tg)

R(t1, . . . , tg) _ 1

�

We also introduce the following notation:

• F (t1, . . . , tG) =
G
X

g=1

⇡̃g [⇡0,gtg + (1� ⇡0,g)F1,g(tg)]

• Fdr0(t1, . . . , tG) =

G
X

g=1

⇡̃gtg

F (t1, . . . , tG)

Also, instead of the parametrization (t1, . . . , tG) we will sometimes parametrize
the above functions by (t,w), where w 2 RG

�0. The parametrization will be given
by (t,w) 7! (w1t ^ 1, . . . , wGt ^ 1), and for example we will write F (t,w) or
R(t,w) for the induced functions. Note that for notational convenience we will
write e. g., wgt instead of wgt^1 whenever the truncation is obvious by the context.

We also introduce notation for the Euclidean subsets in which the weight vectors
lie:

Definition 1. (1) �G :=

(

w 2 RG : wg � 0,
G
X

g=1

⇡̃gwg = 1

)

(2) �G
" :=

(

w 2 RG : wg � 0,

�

�

�

�

G
X

g=1

⇡̃gwg � 1

�

�

�

�

 "

)

for " > 0

Lemma 1. Let Assumptions 1-4 hold and let 1
2 > " > 0. Then it follows that:
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Proof. We start with the proof of (1). Note that as in [3], the Assumptions 3 and
4 yield, by a simple modification of the proof of Glivenko-Cantelli [52], that:
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Based on the above, we get:

sup
w2�G

"
t2[0,1]

�

�

�

�

�

V (t,w)

m
�

G
X

g=1

⇡̃g⇡0,gwgt

�

�

�

�

�

 sup
t1,...,tG2[0,1]

�

�

�

�

�

V (t1, . . . , tG)

m
�

G
X

g=1

⇡̃g⇡0,gtg

�

�

�

�

�

= sup
t1,...,tG2[0,1]

�

�

�

�

�

G
X

g=1

Vg(tg)

m
�

G
X

g=1

⇡̃g⇡0,gtg

�

�

�

�

�


G
X

g=1

sup
tg2[0,1]

�

�

�

�

mg

m

Vg(tg)

mg
� ⇡̃g⇡0,gtg

�

�

�

�


G
X

g=1

"

⇡̃g sup
tg2[0,1]

�

�

�

�

Vg(tg)

mg
� ⇡0,gtg

�

�

�

�

+
�

�

�

⇡̃g � mg

m

�

�

�

#

! 0 almost surely as m ! 1

The convergence follows by Assumption 2 and the Glivenko-Cantelli type results
above.

In the same way we can show the analogous result for the hypotheses under the
alternative and then another application of the triangle inequality yields (2).

Lemma 2. Let 1 � � > 0, 1
2 > " > 0 and let Assumptions 1-4 hold. Then it

follows that:
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In this case, the convergence follows by Assumption 2, Lemma 1 and because
inf

w2�G
"

F (�,w) > 0. The latter follows because of the compactness of �G
" , the

continuity of F and because:

F (�,w) > 0 8 w 2 �G
"

Theorem 3. Let 1 � � > 0, 1
2 > " > 0 and let Assumptions 1-4 hold. Then:
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Proof. First note that:
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This follows by Lemma 1 and a similar argument as in the proof of Lemma 2.
In addition, by construction it holds that for all w 2 RG

�0:
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The last inequality holds, because by Assumption 2: mg

m ! ⇡̃g � ⇡̃g⇡0,g. Com-
bining the two results above, yields the wanted result:

lim inf
m!1
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w2�G

"
t2[�,1]
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dFdr(t,w)� V (t,w)

R(t,w) _ 1
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� 0 almost surely

For the final proof of asymptotic consistency of IHW, we will need one additional
assumption:

Assumption 5. There exists t0 2 (0, 1] such that: sup
w2�G

Fdr0(t0,w) < ↵.

Theorem 4. Let Assumptions 1-5 hold. Also let w⇤ be a (possibly data-driven)

weight vector, i.e. satisfy w⇤
g � 0 and

PG
g=1 mgw

⇤
g = m. Define:

t⇤(w⇤) = sup
t2[0,1]

n

t |dFdr(t,w⇤)  ↵
o

Then the weighted Benjamini-Hochberg procedure with (data-driven) weights w⇤

(assigned by a measurable rule) asymptotically controls the FDR, in other words:

lim sup
m!1

FDR(t⇤(w⇤),w⇤)  ↵

Proof. Let t0 be as in Assumption 5, i.e. assume that ↵�supw2�G Fdr0(t0,w) > 0.
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For this ", pick M large enough, such that w⇤ 2 �G
" 8m � M . Such M exists by

Assumption 2.

By Lemma 2, we get that for almost all ! in our sample space, there exists fM(!)
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Therefore it follows that: dFdr(t0,w⇤) < ↵ and thus: t⇤(w⇤) � t0.

In particular we get:

lim inf
m!1

t⇤(w⇤) � t0 almost surely



Then let � = t0

2 > 0. By Theorem 3 it holds with probability 1 that:

lim inf
m!1
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In particular, since by definition dFdr(t⇤(w⇤),w⇤)  ↵, it also follows with proba-
bility 1 that:

lim sup
m!1

V (t⇤(w⇤),w⇤)

R(t⇤(w⇤),w⇤) _ 1
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Applying the reverse Fatou Lemma yields the result, i.e.:
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�
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Remark 6: Thereom 4 implies that IHW with modification (E1) asymptotically controls
the FDR. Similarly, IHW with modifications (E1) and (E3) also asymptotically controls
the FDR. Note that at least intuitively (and shown in our simulations), modifications
(E2) and (E3) make our procedure even more conservative. The full procedure is also
asymptotically consistent; but to include modification (E2), the proof needs a straight-
forward modification: Instead of considering G groups based on the covariate, we need
to consider the G⇥n

folds

groups as generated by all combinations of covariate levels and
folds. Then the proof proceeds in exactly the same fashion.
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